A deterministic sparse FFT algorithm for vectors with small support

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deterministic Sparse FFT for Functions with Structured Fourier Sparsity

In this paper a deterministic sparse Fourier transform algorithm is presented which breaks the quadratic-in-sparsity runtime bottleneck for a large class of periodic functions exhibiting structured frequency support. These functions include, e.g., the oft-considered set of block frequency sparse functions of the form

متن کامل

A sparse multidimensional FFT for real positive vectors

We present a sparse multidimensional FFT randomized algorithm (sMFFT) for positive real vectors. The algorithm works in any fixed dimension, requires an (almost)-optimal number of samples (O R log N R) and runs in O R log(R) log N R complexity (where N is the size of the vector and R the number of nonzeros). It is stable to noise and exhibits an exponentially small probability of failure.

متن کامل

Sparse FFT for Functions with Short Frequency Support

In this paper we derive a deterministic fast discrete Fourier transform algorithm for a 2π-periodic function f whose Fourier coefficients with significantly large magnitude are contained inside a support interval of length B. The algorithm is based on a method for the efficient recovery of B-sparse 2π-periodic functions presented by Iwen in [15]. If a good bound B on the support length is known...

متن کامل

A sparse Prony FFT

We describe the application of Prony-like reconstruction methods to the problem of the sparse Fast Fourier transform (sFFT) [6]. In particular, we adapt both important parts of the sFFT, quasi random sampling and filtering techniques, to Prony-like methods.

متن کامل

Support Vector Machines with Sparse Binary High-Dimensional Feature Vectors

We introduce SparseMinOver, a maximum margin Perceptron training algorithm based on the MinOver algorithm that can be used for SVM training when the feature vectors are sparse, high-dimensional, and binary. Such feature vectors arise when the CRO feature map is used to map the input space to the feature space. We show that the training algorithm is efficient with this type of feature vector, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2015

ISSN: 1017-1398,1572-9265

DOI: 10.1007/s11075-015-0028-0